AP4Z

WATSON & WALKER
APPLICATION PROFILER FOR Z

Cheryl Watson
Watson & Walker
cheryl@watsonwalker.com
ap4z@watsonwalker.com

VWV

Watson Walker
© Watson & Walker

Table of Contents

Watson Walker

Who are we?

Background

What is an Application Profiler?

What is available out there?

Our application performance profiling Tool

Some use cases

© Watson & Walker

Slide |

2

ho are we? R——— —

« Watson & Walker was founded in 1988 by
Cheryl Watson & Tom Walker

and CPU Charts since 1991. If you AN BTN
have never seen one of our newsletters, send an emall for a free copv

 After the Tuning Letter, our primary focus has been helping our customers
reduce their software costs. We use our SCRTPro tools for studies such as
Tailored Fit Pricing (TFP).

« We are completely independent, not beholden to any vendor, so we can offer
objective information based on our collective experience and what we see in
other customers, allowing clients to make a fully informed decision.

* [n addition to our publications, our team provides consulting, classes, and
software products (both free and chargeable) to help our customers.

© Watson & Walker Slide| 3

mailto:admin@watsonwalker.com?subject=Free%20copy%20of%20Cheryl%20Watson's%20Tuning%20Letter
https://watsonwalker.com/services/tfp/

!m = VWV

Watson Walker

 Historically the focus for performance tuning has been more on infrastructure optimization than on
applications. This is because of:

» Better documentation and tooling.
* More widely available infrastructure tuning skills.

« Small changes having wide impact.

* But:
» The efficiency of commercial software products is usually better than that of applications.

» The infrastructure is usually changed less frequently than applications, and usually in a more
controlled manner.

« After so many years of infrastructure tuning the opportunities for significant improvements are
lessening.

© Watson & Walker Slide| 4

Mpplication tuning vw

 Application tuning may provide significant benefits, but:

« Application teams are typically under pressure from their funders to release new functions — they
can’'t spend a long time to find tuning opportunities for existing applications.

« There is no clear owner for application tuning initiatives:
 |IT infrastructure people can’t perform the tuning on their own.
« Application developers don’t pay the software bills, so they have little incentive.

* The required skills and techniques cross the boundaries between infrastructure and applications,
with very few tools, if any, specifically aimed at supporting large scale application performance
analysis.

« With the looming end-of-service (April 30, 2022) for COBOL V4 and migration to COBOL V6,
teams are struggling with a lack of tools to identify the most important programs to work on..

All the above prompted us to consider developing an application workload profiler
© Watson & Walker Slide| 5

!40/

BOL — Why the push? vw

» There are two driving forces

« COBOL V4 compiler goes out of service on April 30,
2022. The compiled programs can run fine if they are
LE-enabled. But if recompiled, problems can be
reported only on COBOL V6+. So, the migration

would need to be done at that time. Instructions by z CPC Generation
« Companies want to reduce CPU time in order to a8 39
reduce software costs. COBOL V6 allows them to do
that with ARCHLVL compiler options (some clients (2EC12) 19 BIPFE- 10

can see a 20% CPU reduction, while others don’t).
The chart at the rights shows that over 40% of all
z/OS instructions can be used only on higher

Hz10
mz196
mzEC12

ARCHLVLs. Many of them are designed to reduce 187 213
the CPU time for decimal calculations (i.e., a large B
part of COBOL apps). m 215

« Migration to COBOL V6 can be difficult

 Many sites have thousands of COBOL programs. A
tool is needed to find those most frequently loaded
and those using the most CPU time.

© Watson & Walker Slide| 6

hat is application profiling?

Watson Walker

WIKIPEDIA

TThe Free Encyclopedia

| Main page
Contents

‘ Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help
Community portal
Recent changes

| Upload file

VTIPS e mWIKIPROROTY Wik HrofRgtcomputer—programmingy =

& Not

Article Talk Read Edit View history

Profiling (computer programming)
From Wikipedia, the free encyclopedia

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challeng
Find sources: "Profiling" computer programming - news « newspapers « books « scholar « JSTOR (January 2009) (Learn how and when to remove this template message)

In software engineering, profiling ("program profiling", "software profiling") is a form of dynamic program analysis that measures, for example, the space (memory) or time complexity of a program, the
usage of particular instructions, or the frequency and duration of function calls. Most commonly, profiling information serves to aid program optimization.

Profiling is achieved by instrumenting either the program source code or its binary executable form using a tool called a profiler (or code profiler). Profilers may use a number of different techniques, such

event-based, statistical, instrumented, and simulation methods. |

|
Contents [hide] ;

1 Gathering program events

2 Use of profilers

An application profiler monitors the actual execution of application code
to collect information (CPU time, number of calls, etc.) about noticeable
events (calls to other programs, error conditions, memory

© Watson & Walker

management, etc.) to aid program optimization.

Slide| 7

>>Our idea of a z/OS application profiler

© Watson & Walker

 We created a tool that is:

Specifically designed to profile application execution
(only applications).

Aimed at providing a full picture about programs /
subroutines and their actual relationships.

Easy to use, with a negligible, measureable impact on
CPU consumption, to allow it to always be running.

Able to report elapsed time and CPU consumption at the
individual program level.

Able to collect each module’s compile data (compile
date, compiler release, compiling options).

Able to collect information to build a call graph, showing
who calls who.

Slide |

Watson Walker

8

!/Wh/ ™y,

at is available today? MWV,

Load Module Analyzers

« Static (“point in time”) view of load libraries, including
compiler data (version, date, options). Can't tell if used.

Software Asset Management Tools

« Track program loads, but main focus is on software
license utilization compliance. Don’t provide call graphs or
any application-oriented information (like compiler data). = Software Asset Management Tools

Execution Samplers

* Deep dive analysis of specific programs’ behavior down to [eyrra s ey pes
the single instruction. But due to overhead, can be used
only on a few programs at a time.

SMF Type 30 Data gm >MF Data

» Everyone collects these, so no additional overhead, but is
usually used to collect step-level (not module-level) CPU
and /O counts. It doesn’t provide call graphs or any
application-oriented information (like compiler data).

ml LOad Module Analyzers

© Watson & Walker Slide| 9

"\N{N

ur solution — AP4Z VWV

Watson & Walker Application Profiler for Z - AP4Z

AP4Z works with existing load modules and JCL procedures.

e Mario Bezzi, author of W&W free tools, WWUNTERSE and
IMPORTANT _MESSAGES Health Check, was the designer and lead developer.

e Looks at programs actually executed rather than static load libraries.
e Does not require source code changes or recompiles.

e No changes to existing JCL.

e Does not install system-wide hooks or user exits.

e Doesn’t require APF-authorization.

e Supports Dynamic (most common) and Static calls.

e Supports COBOL, PL/I, C/C++, and Assembler (if LE-enabled).

© Watson & Walker Slide| 10

https://watsonwalker.com/software/free-tools/

"\N’v

ur solution — AP4Z VWV

AP4/Z can trace Module Load activity, Program Call activity, Memory Management
and Condition Handling.

* |t can optionally provide information about the program call tree and a detailed
Program Call Trace.

» Options can be enabled separately, and the level of profiling can change for
different Jobs / Programs.

« Base AP4/Z collector for batch jobs and Db2 stored procedures will be available
September 2021.

« CICS and additional functions expected to ship by YE 2021.

© Watson & Walker Slide | 11

!ﬂa/ y

ta we collect VWV

Job Step Level Module Level

CPC model 2/0S level Module name Load count
Sysplex name System name Call count Elapsed time
Userid Job name CPU times Amode

Job-id Job start date-time Routine type? Compiler version
Step name Step program name Compile date Code page option
Step start date-time # created enclaves All compile options

created threads #/type memory req

handled conditions 1 LE conforming, Fastlink, IEEE floating
point, XPLINK, DLL

© Watson & Walker Slide| 12

L ——
g—

AP4Z — Application Performance Profiling Tool VWV

Performance impact of running AP4Z is negligible and can be tracked. For this reason, we recommend always
keeping it on. If needed, the scope of profiling can be limited to specific programs and/or jobs. Different objects
can use different profiling options.

Over time, AP4Z builds a history of which programs are in use, how they perform, how they contribute to the

overall elapsed and CPU time, how they relate to each other, when they were recompiled, and what options were
used during each compile.

Based on our early
Collected data is loaded into a historical database. Data is analyzed using a measurements the profiling
browser-based graphical user interface that provides both pre-defined reports / overhead should be below
charts and on-demand queries. Using SQL is an option, but not required. 0.5% for batch and below 1%

for CICS

© Watson & Walker Slide| 13

4Z — Application Performance Profiling Tool VWV

WWAPA4Z Hist Database

Data Analysis Engine

Extract

User PC

WWAP4Z
Dataset

Batch
Reports

© Watsor Slide| 14

ample AP4Z Dashboard - PGMLOADs

Application Profiler Summary Data

Most used Modules

mod language
COBOL
COBOL
C/C4++
COBOLvV5/nE
COBOL
COBOL
COBOL VSV
COBOLvVS/vE
COBOL
COBOL
COBOL
COBOL VSV
C/C4++
COBOL
C/C4+
COBOL
COBOL
COBOLVS/VE
COBOL
COBOLVS/v6E

COBOL VSV

© Watson & Walker

archlvl

NA

MNA

N/A

7

MNA

MNA

MNA

MNA

NA

N/A

MNA

N/A

MNA

MNA

12

MNA

11

11

optimizeOption loadCount
N 37,634

N 37,282
N/A 11,079
] 216

N 894

N 775

o 710

] 710

N 710

N 710

N 463

o 443
N/A 441
N 436
N/A 386
N 330
N 330

o 330

N 328

2 316

2 316

Rows 1-210of 1611

r

COBOL loads by year of compilation

Year loadCount
2021 5,356
2020 600
2019 578
2018 6,446
2017 4,515
2016 517
2015 35,822
2014 44,641
2009 1
2000 151
1998 3

Really old COBOL modules

moduleName cobolVersion compilationYear loadCount
01.02.00 1998 2
01.02.00 1998 1

COBOL loads by compiler version

80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000

[}
06.02.00 06.01.00 04.02.00 01.02.01 01.02.00

cobolVersion

COBOL Loads by compiled ARCHLVL

archivl loadCount
NA 83,707

12 2,913

11 7.978

7 4,032

Profiler CPU Consumption

A A

2,000 4,000 6,000 8,000

Module loads by Language
language

COBOL for O5/390 & VM, COBOL for MVS & VM
COBOLVS andvé

05/390 C/C++, C VM/ESA, XL C/C++

VisualAge PL/I for OS/3%90

ASSEMBLER

Watson Walker

83,707

14,923

12,603

334

75

COBOL Loads by compiled optimization level

optimizeOption

M

2

10,000 12,000 14,000

ProfilerRun

Fow i

83,707
10,561

4,362

14,816
193

16,000

by Metabase

Slide| 15

ample AP4Z Dashboard - PGMCALLs

WW AP4Z Sample Dashboard

B Our analytics

Most Called Programs

moduleName

© Watson & Walker

language
COBOL V3 /vé
COBOLVS/v6
COBOL VS /v6
COBOL VS /vé
COBOL VS /vé
COBOL V5 /vé
COBOL V5 /vé
COBOLV3/v6
COBOLV3/v6
COBOL V3 /vé
COBOL V3 /v6
COBOL v4
COBOL VS /vé
COBOL VS /vé
COBOL VS /vé
COBOL V5 /vé
COBOLV3/v6
COBOLV3/v6
COBOL V3 /v6
COBOL VS /v6

COBOL V5 /vé

Loads

18

]

58

1%

656

11

20

663

663

662

4,290,642,435

1,444,955.475

263,158,716

257,997,146

145,774,606

109,076,525

83,932,126

66,592,004

61,869,628

58,309,842

58,309,839

46,806,938

44,649,694

44,277,277

42,111,352

34,267,580

24,147,791

20.749.370

15,743,782

15,743,782

15,743,775

Avg Elapsed (usecs)
133
53.35

8,304.5

6.5
31,586.8
34

167.2
1.5

1]
45,643.3
38,305.3
2,020.8
1.3

44.2

i}

5.6

48.9
82.8
2,118.9
14,122.2

4,103.1

Ave CPU (usecs)

28

178

139.8

18

251.1

71

178

424

304

108.3

13.4

2.6

15.4

232

102.4

404.6

1203

Rows 1-21 of first 2000 3

Module invocations by Language

language

COBOLvV3/v6 4,137
COBOLv4 33
Assembler 49
C/C++ 58
PL/I 15

Module invocation by year of compilation

Profiler CPU Utilization (usecs)

Loads

78,672

773

260

13,544

257

calls

7.466,531,395

46,853,848

25,654

12,580

Year

489

Avg Elapsed (usecs)
702,304.6
5,384,515.3
142141
123,142240.8

161,899,700.2

Avg CPU (usecs)

103,996.2

333,252.9

2,062.5

77,251

73,3446

COBOL invocations by Compiler Version

compilerVersion modules
060200 1816
060100 2327
040200 23
010201 9
010200 1

COBOL invocations by ArchLevel

archivl modules
11 2,327

12 1,810

MA 33

7 &6

COBOL invocations by Optimization Level

COBOL Version Optimize Modules
COBOLV3/v6 2 4,130
COBOLv4 N 25
COBOLv4 ¥ 8
COBOLvVS/vé 1] r g

Watson Walker

calls

3,554,416,304

3,912,115,091

44,431

46,809,414

3,912,115,091
3,554,416,262
46,853,848

42

Calls
7.466,531,352
46,853,066
782

43

Metabase

Slide| 16

|dentify modules that
have the highest load
count.

|[dentify modules
consuming the most
CPU time (average
and total).

|dentify modules
responsible for the
elapsed time (average
and total).

|dentify modules that
are called the most
often.

Sort on any column.

© Watson & Walker

*Use Case — Which programs are being used?

Watson Walker

Frank's Dashboard

M Frank Kyne's Personal Collect|on

Top Programs by CPU Time (mics)

moduleMame

Language

COBOLvV5 /v

COBOLvVS /vé

COBOLvS3/vé

COBOLVS/vé

COBOLvV3/vé

COBOLvVS/v6

COBOLvVS/v6

COBOLvV5/vé

COBOLvVS /v

COBOLv3 /v

COBOLvVS/ vé

COBOLV3/vé

COBOLvV3/vé

COBOLvV5/v6

COBOLv4

COBOLvV5/vé

COBOLvS /vé

COBOLvVS/vé

COBOLvV3/vé

4,290,642 435

1,444.955,475

2

7,216,346

4

2

2

3

1

152,548

: |

152,548

312,269,282

619,696,671

1,632,339.2

112,621,835.7

10,491,652,429

202,306,238

335

90,947,828.0

1,601

30,949,689.3

88,344,298

114,667,432

285,441,764

499 167 423.3

50,780,564

3,959

145,699,402

278

- - - A“‘ECPU szec;l

428,143,668.7

422 923,248

812,482

98,277,432

128,235,199

127 717,974

178

81,785 4745

11

45,567 %62.3

79,128212

70,393,701

49,194 397

72,708,269.7

44 599398

289

40,816,966

246

Total Elapsed (usecs)

61,200,526,547
1,536,807,846
619,696,671
2,033,687,611
337,863,567
10,491,652,429
202,506,238
2,494,565,302
181,895,657
11,559,368,316
203798.757
176,688,596
229,334,864
285,441,764
1,497,502,270
50,780,564
603,965,122
145,899,402

42,510,181

Total CPU (usecs)

8,074,390,394
1,284.431,606
422923248
583,615,341
294832296
128235199
127,717,974
518,911,776
163,570,949
85,928,642
182,271,849
158,256,424
140,791,402
49194397
218,124,809
44899398
44,162,606
40,816,966

37,671,889

by Metabase Rows 1-19 of first 2000 3

Slide |

COBOL invocations by Compiler Version
compilerVersion modules
060200 1816
060100 2327
040200 23
010201 9
010200 1

© Watson & Walker

calls
3,554,416,304
3,912,115,091
44 431
46,809,414

3

|Mep dive into active COBOL modules VW

Watson Walker

ldentify COBOL modules that have the highest load count (prior slide).
|ldentify COBOL modules consuming the most CPU time (prior slide).
|dentify COBOL modules by compiler version.
|ldentify COBOL modules by optimization level.
ldentify COBOL modules by ARCHLVL.

COBOL Loads by compiled optimization level

optimizeOption loadCount
N 83,707
2 10,561
0 4362

COBOL Invocations by ARCHLVL

M Frank Kyne's Personal Collection = WW AP4Z D210715
This question is written in SQL.
archivi Modules Calls Total_CPU_Time_{usecs)
11 2327 3,912,115091 7.,392,800,917
12 1810 3,554,416,262 10,537,021,766
NA 33 46,853,848 266,954,271
7 6 42 4134

Slide| 18

|Mep dive into active COBOL modules VW

COBOL loads by year of compilation

2021
2020
2019
2018
2017
2016
2013
2014
2009
2000

19%8

red by Metabase

* |dentify COBOL modules by year of compilation.

3,356

SO0

378

&, 446

4,513

317

33,822

44,641

i

151

3

COBOL loads by compiler version

50,000

A, CH0

Watson Walker

Really old COBOL modules d by Metabase
moduleName cobolVersion compilationYear T I
01.02.00 1998 2
01.02.00 1998 1

 Display in tabular or graph format.
* |dentify really, really old COBOL modules.

© Watson & Walker

Slide| 19

mhange control options

* |dentify all changed modules during

the last week.

« We are after a specific module..

CPU Time and Invocation Count for Selected Program % Powered
Profiler Runblo. MNo. of Invocations
30,319 404 510978
39079 389048134
44,245 46,402 515
49831 48,564,250
49 564 37900459
50,039 AQ T2 656

by Metabase

Az CPU Time

1.53

Watson Walker

1.52

5.63

5.53

.36

3.84

Modules Sorted by Compile Date and Time

Module Hame PpaZtime Stamp
202107 1531844420
202107 151044420
202107151842420
202107 151838190
202107151824420
A02107T131815420
202107 131805570
202107151751320
202107151724220

202107151719210

Powered by Metabase

Compiler Version
DE0200
DaE0200
D&0200
Da0200
Daf200
DSOZ00
D200
DaE0200
DSE0200

D&0200

Arch Lyl

12

12

12

R

Load Count Call Count
1 48,544,250
1 48 752 656
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Rows 1-10 of first 2000 k

* This module changed its behavior,

when and why did it change?

© Watson & Walker

Slide | 20

* |dentify module loads by language.

* Quantify overhead for AP4Z.

© Watson & Walker

mnteresting statistics

Watson Walker

language

COBOL VS5 and vé

ASSEMBLER

Module loads by Language

COBOL for OS/390 & VM, COBOL for MVS & VM

0S/390 C/C++, C VM/ESA, XL C/C++

VisualAge PL/I for O5/390

1 by Metabase

loadCount

83,707

14,923

12,603

334

75

Profiler CPU Utilization (usecs)

Profiler RunNo.: 11,066

totalCPUTime: 1825

LBPE |

Slide | 21

© Watson & Walker

ther use cases

Understand relationships
between different programs
and applications.

Identify sub-optimal compile
options or programs running
with less efficient runtime
options.

Help speed up root cause
analysis on performance slow-
downs.

A

Detect unexpected or non-
compliant relationships.

Prepare, support, and track
the migration to new compiler
version and measure the
benefits or lack of benefits.

Detect handled conditions
which may impact program
efficiency.

@

Watson Walker

Generate inventories of
programs related to
applications subject to
transformation projects.

Increase accuracy of Quality
Assurance test by determining
in advance what should be
tested after a change.

Slide| 22

ata we collect (same slide as before) VW

Job Step Level

CPC model z/0S level

Sysplex name System name
Userid Job name

Job-id Job start date-time
Step name Step program name

Step start date-time # created enclaves
created threads #/type memory req
handled conditions

© Watson & Walker

Module Level

Module name Load count

Call count Elapsed time

CPU times Amode

Routine type? Compiler version
Compile date Code page option

All compile options

1 LE conforming, Fastlink, IEEE floating
point, XPLINK, DLL

Slide| 23

> Summary of Application Profiling Capabilities VWV

Capability AP4Z Execution Samplers CELILEL AL S ICGGL SMF Step Data

Analysers Management Tools

Run a continuous dynamic data collector Y N N Y Y
Provide a dynamic view of programs actually in use Y Y N Y N
Provide module compiling information Y Y Y N N
Only track application programs load requests Y N N N N
Track the actual relationships between modules Y Y N N N
Can create a call tree Y Y N N N
Report execution times at the module level Y Y N N N
Able to trace static calls N Y N N N
Report execution time at the instruction level N Y N N N
Report I/0O at the step level N N N N Y
Install system wide hooks, requires APF authorization N Y N Y N
Has a noticeable impact on system wide performance N Y N Y N
Provide a static view of modules in a load library N N Y Y N
Track all module load requests N Y N Y N
Good from an application profiling perspective Not as good from an application profiling perspective

© Watson & Walker Slide| 24

Wm

47 Future Direction VWV

Support for CICS transactions.
Additional canned reports.
Ability to create call graphs.

Support for IMS transactions.

Java program profiling.

Ability to run under zCX for reporting.

© Watson & Walker Slide| 25

g———

\

s AP4Z right for you? VW

© Watson & Walker

We designed this to fill an important gap in the marketplace.

No other product provides as much insight into applications as AP4Z brings.

If you’re under pressure for identifying and recompiling your critical COBOL V4
programs and dynamically-called programs, this is the very best tool to identify them.

The negligible CPU cost allows you to always keep it running for continuous tracking.

Many other IT departments, especially in operations and change control, will find this
product invaluable.

The easy-to-use graphical interface to the offline database provides the ability to use
the past to understand patterns, as well as to identify important trends.

Slide| 26

B e oo Y

or more information... VWV

 Email to: ap4z@watsonwalker.com

 See our website at; www.watsonwalker.com/software/ap4z

« This points to a recording of this presentation, a PDF of the presentation, and a Tuning Letter
article about AP4.Z.

* You can also sign up to receive more information or a live demo.

* |f you have questions or want to comment on this presentation, please contact us
at ap4z@watsonwalker.com.

© Watson & Walker Slide | 27

mailto:ap4z@watsonwalker.com
http://www.watsonwalker.com/software/ap4z
mailto:ap4z@watsonwalker.com

r

et

Watson Walker

Watson Walker

Thank you!

© Watson & Walker Slide| 28

	 AP4Z�� Watson & Walker�Application Profiler for z�
	�Table of Contents
	Who are we?
	Background
	Issues with application tuning
	COBOL – Why the push?
	What is application profiling?	
	Our idea of a z/OS application profiler
	What is available today?
	Our solution – AP4Z
	Our solution – AP4Z
	Data we collect
	AP4Z – Application Performance Profiling Tool
	AP4Z – Application Performance Profiling Tool
	Sample AP4Z Dashboard - PGMLOADs
	Sample AP4Z Dashboard - PGMCALLs
	Use Case – Which programs are being used?
	Use Case – Deep dive into active COBOL modules
	Use Case – Deep dive into active COBOL modules
	Use Case – Change control options
	Use Case – Interesting statistics
	Other use cases
	Data we collect (same slide as before)
	Summary of Application Profiling Capabilities
	AP4Z Future Direction
	Is AP4Z right for you?
	For more information…
	Slide Number 28

