

An MVS System Programmer's Trip to ApplicationLand

Mario Bezzi – mario@watsonwalker.com

SHARE Columbus, August 2022

Session 44114

1

mailto:mario@watsonwalker.com

Agenda

• Who am I.

• Why application tuning on z/OS.

• Tuning what – Data access vs data processing.

• Focusing on data processing.

• Pushing on zIIPs exploitation.

• Summary.

2

Who am I

• Long time MVS system programmer.

• I’ve spent most of my career working on Sysplex, WLM, infrastructure configuration and tuning.

• Started with Assembler and loved it, know some PL/I, Java, Python, nowadays I mostly use C
and Metal-C.

• Lately got interested in application tuning, I’ve developed AP4Z, the Application Profiler for Z.

• AP4Z is designed to profile applications’ execution at scale.

• Simple, with no special system requirements, with a negligible impact on CPU consumption.

• Able to build a long term history about active programs, their performance, their relationship.

3

https://watsonwalker.com/software/ap4z/

Why Application tuning on z/OS

Historically the focus for tuning has been higher on infrastructures than on applications because of:

• Better documentation and tooling.

• More widely available infrastructure tuning skills.

• Small changes having wide impact.

But:

• The efficiency of commercial software products is usually better than that of applications.

• Infrastructure usually changes less frequently than applications, and in a more controlled way.

• After so many years of infrastructure tuning the opportunities are lessening.

4

R4HA bill is driven solely by the peak 4HRA.

• Adding or removing work outside the peak
has ZERO effect on your SW bill.

• Tune your 4HRA to reduce your costs.

With TFP, you pay for every MSU.

• TFP eliminates the 4HRA white space.

• If you add 1 MSU of work, you pay for 1
more MSU, regardless of when It is used.

• Tune against all your workload as any MSU
you remove may reduce your bill.

Tuning – 4HRA Peak or Aggregated Consumption ?

 Depending on your environment data access activities may contribute significantly to total
resource utilization / Response time.

 This is true for the cost of doing I/O, which may be avoided, and especially true for the cost of
executing SQL statements when using Db2.

 There is less value in optimizing your data processing logic if it only accounts for a small part
of the total.

 Do you have a process to detect and fix less than optimal [relational] data access patterns?

Tuning what – Data Access vs Data Processing

Db2 Aggregated Accounting Statistics

Aggregated Accounting Statistics enabled by activating Statistic Trace Class 9 or IFCID 369

Data only available if Accounting Trace Class 3 is also active

 Application Design change

 Compiler currency

 Program attributes / runtime options

Focusing Data Processing

Application design change

Look at the below real life scenario: A z/OS Java job that sends data processing requests to a
distributed server using MQ. To process the request the distributed server gets data from the same
z/OS image via DDF.

9

Java Batch

Db2

MQ

Java Appl

DRDA

z/OS Distributed

Can something like this really be changed?

Why (COBOL) Compiler currency

• Enterprise COBOL 4 and 5 compilers went out of support.

• The COBOL V5 and V6 are modern compilers aimed at generating very efficient code.

• COBOL V6 offers 3 levels of optimization, allowing to achieve savings of between 15% and 43%
compared to COBOL V4, depending on which level of optimization is requested at compile time.

• COBOL V4 offered an OPTIMIZE option. But according to IBM benchmarks, using this option
only decreased CPU consumption by an average of 1%.

• COBOL V4 generates code based on 1990s technology. COBOL V6 optionally produces code
that exploits the latest processor technologies.

• In IBM benchmarks, selecting z15 as the target environment rather than the COBOL V6 default,
(z10), delivers CPU savings of up to 23%.

10

https://www.youtube.com/watch?v=CA7CrgsOfaw
https://www.youtube.com/watch?v=CA7CrgsOfaw
https://www.youtube.com/watch?v=CA7CrgsOfaw
https://www.youtube.com/watch?v=CA7CrgsOfaw
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=v6-arch
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=v6-arch

Supported ARCHLVLs by compiler version

11

ARCH LVL 7 8 9 10 11 12 13 14

Machine Model
2094 (z9 EC)

2096 (z9 BC)

2097 z10 EC)

2098 (z10 BC)

2817 (z196)

2818 (z114)

2827 (zEC12)

2828 (zBC12)

2964 (z13)

2965 (z13s)

3906 (z14)

3907 (z14 ZR1)

8561 (z15)

8562 (z15 T02)
3931 (z16)

Enterprise COBOL 6.4 Y Y Y Y Y

Enterprise COBOL 6.3 Y Y Y Y Y Y

Enterprise COBOL 6.2 Y Y Y Y Y Y

Enterprise COBOL 6.1 Y Y Y Y Y

Enterprise PL/I 6.1 Y Y Y Y Y

Enterprise PL/I 5.3 Y Y Y Y Y

Enterprise PL/I 5.2 Y Y Y Y

Enterprise PL/I 5.1 Y Y Y Y

ABO 2.2 Y Y Y

ABO 2.1 Y Y Y Y

ABO 1.3 Y Y Y

History of Enterprise COBOL Performance

https://www.ibm.com/links?url=https%3A%2F%2Fibm.ent.box.com%2Fv%2FCOBOLMigrationWebinars%2Ffile%2F944448003276

https://www.ibm.com/links?url=https://ibm.ent.box.com/v/COBOLMigrationWebinars/file/944448003276

COBOL migration – some considerations

• Programs compiled with COBOL 6 cannot be mixed in an application with OS/VS COBOL
programs or with VS COBOL II NORES programs.

• Programs processing invalid data may behave differently when compiled by COBOL 6 .

• IBM recommend migrating using a two phases approach where phase I is focused on spotting
and fixing invalid data issues, while phase II compiles and tests programs for deployment in
production.

• No need to recompile everything, focus on programs being actively developed, and among them
on those using most CPU or being used more frequently first.

• For programs not actively developed IBM offers ABO, the Automatic Binary Optimizer for z/OS.

13

Assessing the impact of COBOL migration

14

Assessing the impact of COBOL migration

15

List of OS/VS COBOL and VS COBOL II modules actually seen being used.

For each of them you can get which Job / Transaction used it, who were the callers

Some good (COBOL) compiler options

• OPTIMIZE - Use OPTIMIZE to reduce the run time of your object program. Optimization might
also reduce the amount of storage your object program uses.

• ARCH - The ARCH option specifies the machine architecture for which the executable program
instructions are to be generated. Your application might abend if it runs on a processor with an
architecture level lower than what you specified with the ARCH option.

• RENT - A program compiled as RENT is generated as a reentrant object program. If all programs
in a program object are compiled with RENT, it is recommended that the program object be link-
edited with the RENT binder (linkage-editor) option

• INITCHECK - Use the INITCHECK option to have the compiler check for uninitialized data items
and issue warning messages when they are used without being initialized.

16

https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6

https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6

Some not so good COBOL compiler options

• SSRANGE - SSRANGE generates code that checks whether subscripts try to reference areas
outside the region of their associated tables. Variable-length items are also checked to ensure
that references are within their maximum defined length. If the SSRANGE option is in effect,
range checks will be generated by the compiler and the checks will always be conducted at run
time.

• NUMCHECK - NUMCHECK tells the compiler whether to generate extra code to validate data
items when they are used as sending data items. NUMCHECK is much slower than
NONUMCHECK, depending on how many zoned decimal (numeric USAGE DISPLAY) data
items, packed decimal (COMP-3) data items, and binary data items are used in a COBOL
program.

17

https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6

https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6
https://www.ibm.com/docs/en/cobol-zos/6.3?topic=ptg-how-tune-compiler-options-get-most-out-v6

Important program attributes – Reentrancy

• A computer program is considered reentrant if multiple invocations can safely run concurrently
using the in memory copy of the program. A reentrant program is always serially reusable, the
opposite is not true.

• How to achieve reentrancy: In Assembler language the programmer is responsible of using
appropriate techniques to achieve it. For compiled languages the compilers usually takes care of
generating reentrant code. If all programs in a program object are compiled with RENT, this can,
and should be link-edited with the RENT binder option.

• Why it is important: In a multi-processing environment, like CICS, IMS, or with WLM managed
Db2 Stored Procedures, reentrancy allows to avoid reloading the same load module again and
again.

• You must define a Db2 Stored Procedures as STAY_RESIDENT(YES) to achieve the above.

18

• Application programs run under LE threads. Within a thread execution is serial.

• One or more LE threads are associated to a LE enclave or run-unit.

• Resources (storage, programs ..) are owned by the enclave and shared with daughter threads.

• Multi-threading under an enclave is supported, but unusual among traditional applications.

• LE manages two types of storage for use by applications:

• HEAPs – used for COBOL WORKING-STORAGE, C malloc(), and PL/I ALLOCATE requests.

• STACKs – used for save areas plus COBOL LOCAL-STORAGE , C and PL/I automatic variables.

A regular batch program runs under a single enclave, The first program run by a CICS transaction,
and all the subsequent ones invoked via EXEC CICS LINK each run in a different enclave.

Every new enclave allocates its own HEAP and STACK

LE storage management model

How COBOL program storage gets allocated

WORKING-STORAGE is shared among all the programs running under the same enclave.

• It is taken from the LE HEAP when the COBOL run unit (LE enclave) is started.

• Any data items that have VALUE clauses are initialized to the appropriate value at that time. If a
VALUE clause is not specified, the initial value of the item is undefined.

A separate copy of LOCAL-STORAGE data is taken from the LE STACK for each call of a program
or invocation of a method, and is returned from the program or method when it ends.

• If you specify a VALUE clause for a LOCAL-STORAGE item, the item is initialized to that value
on each call or invocation. If a VALUE clause is not specified, the initial value of the item is
undefined.

You may ask LE to initialize either or both, but this is EXPENSIVE (more later).

20

Important Runtime Options – RPTSTG

Important Runtime Options – HEAP (HEAP64)

Important Runtime Options – STACK

Important Runtime Options – STORAGE

Program storage allocation under CICS

• An automatic LE storage tuning feature is available under CICS, it is called AUTODST. When
enabled LE monitors the amount of storage used by each program and increases the initial
storage allocation for the next execution accordingly. This process helps to minimize the number
of GETMAINs and FREEMAINs that CICS has to perform.

• During the execution of a CICS task, every program invoked via EXEC CICS LINK / XCTL runs
under a separate enclave. Each enclave’s initialization drives multiple getmain / freemain
requests for run-unit work areas (RUWA). CICS can optionally create a run-unit work area pool
at task initialization. This reduces the number of GETMAINS and FREEMAINS for tasks that
perform many EXEC CICS LINKS. See the RUWAPOOL CICS initialization option.

25

https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst

https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool

https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-autodst
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool
https://www.ibm.com/docs/en/cics-ts/6.1?topic=summary-ruwapool

Note:

HEAPPOOLS/HEAPPOOLS64 are disabled by default. Using them may benefit multi-threaded applications

A major example:

• AT-TLS (TCP/IP Application Transparent Transport Layer Security) exploits z/OS System SSL.

• AT-TLS is a 64 bit LE application which makes use of multi-threading to support encryption parallelism.

• Using HEAPPOOLS64 for AT-TLS can significantly improve networking latency

Heads Up – HEAPPOOLS (HEAPPOOLS64)

See – “z/OS Communications Server Performance Update” by Mike Fitzpatrick and Dave Herr

https://share.slayte.com/event/06388fc6-aa08-44a5-ab14-c4bdc150094a/sessions/efc66f54-8b73-49db-a9c0-dc8857b8b78d

 Move business logic off z/OS and access Db2 remotely

• Eventually reusing existing mainframe logic via Db2 stored procedures

 Run Java based business logic on z/OS

• Which Java options are available under z/OS?

Pushing on zIIPs exploitation – Popular Options

Move business logic off z/OS using Db2 DRDA

All business logic moved off to distributed

55-60% of ALL SQL processing is zIIP eligible

Reusing some existing mainframe business logic

55-60% of Remote SQL processing is zIIP eligible

DDF + External Stored Procedures DDF

Java – which options are available under z/OS

IBM provides Java SE and Java EE platforms for z/OS:

• IBM SDK for z/OS, Java Technology Edition, Version 8 provides a Java 8 SE SDK for z/OS
and is available in 31 and 64 bit versions.

• “Just” announced IBM Semeru Runtime Certified Edition for z/OS, Version 11.0 provides a
Java 11 SE SDK for z/OS and is only available in the 64-bit version.

• Java EE as part of WebSphere full profile and WebSphere Liberty profile.

• Liberty also shipped as a stand-alone product and as a component of other products (ex. z/OSMF).

29

Available Java deployment environments

• Java SE applications can be deployed under Batch, CICS, IMS, Db2, and WebSphere
Application Server (both Liberty and WAS Full profiles).

• Java EE applications can be deployed under CICS and WebSphere Application Server (both
Liberty and Full profiles).

• CICS, IMS and Db2 all make use of persistent Java Virtual Machines. In IMS, if you mix Java
and legacy code JVM persistency is subject to the characteristics of the legacy code.

• Under Batch the JVM is created and destroyed for every single program execution (usually a
step). Make sure that the associated cost doesn’t offset the savings.

30

Java Interoperability with other languages

Interoperability between Java and “legacy” languages can be achieved in two ways:

• Doing it the Java way, with direct language calls through the Java Native interface (JNI).

• Using functionalities of the runtime environment, such as CICS or DB2 (not for Batch).

In the latter case Inter Language Communication (ILC) is transparent to the involved application
programs, with middleware taking care of all the associated complexity.

If both the Java part and the legacy part make use of Db2, they need a syncpoint coordinator.
CICS, IMS and of course Db2 provide one, Batch doesn’t.

31

Amode 31 and Amode 64 interoperability

Needed if you want to intermix legacy 31 bit mode

code with Java code running in a 64 bit JVM

Summary

• Application tuning offers very promising saving opportunities.

• But siloed organizations and lack of communication make it hard.

• Inhabitants of ApplicationLand really look similar to us.

• Learning to speak a common language is needed to start knowing each other.

33

34 34 34

Your feedback is important!

Submit a session evaluation for each session you attend:

www.share.org/evaluation

www.share.org/evaluation

http://www.share.org/evaluation

Backup Slides

Tuning Data Access – Few examples

• PS System Determined Blocksize

• Use SMF 42.6 to identify candidates and to
measure improvements.

• VSAM System Managed Buffers

• Use SMF 64 to identify candidates and to
measure improvements.

• Requires the dataset to be in extended
format, hence SMS managed.

• Large Db2 Buffer Pools

• Use Db2 Buffer Pool simulation, SMF
100 to measure the benefit.

https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance

https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance
https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance
https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance
https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance
https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance
https://www.ibm.com/docs/en/zos/2.1.0?topic=sizes-io-performance

Db2 Tuning – Most effective actions

• Design databases for performance / design indexes for performance.

• Maintain data organization physically well-organized.

• Maintain Db2 database statistics.

• The ability of Db2 to choose efficient access paths depends on reliable database statistics

• Manage query access paths.

• Access paths are among most important aspects of SQL query performance.

• Efficiently use Db2 buffer pools.

• Use dynamic statement caching for dynamic SQL statements

• Dynamic statement caching saves statements that are already prepared and reuses them.

Routinely measure Db2 performance, Routinely measure Db2 performance, Routinely measure Db2 performance . .

Automatic Binary Optimizer

https://www.ibm.com/support/pages/system/files/inline-files/aboz_v22_datasheet.pdf

https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information

https://www.ibm.com/support/pages/system/files/inline-files/aboz_v22_datasheet.pdf
https://www.ibm.com/support/pages/system/files/inline-files/aboz_v22_datasheet.pdf
https://www.ibm.com/support/pages/system/files/inline-files/aboz_v22_datasheet.pdf
https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information
https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information
https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information
https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information
https://www.ibm.com/docs/en/abo/2.2?topic=process-testing-information

Enterprise COBOL compiler lifecycle
39

Enterprise PL/I compiler lifecycle
40

XL C/C++ compiler lifecycle
41

Automatic Binary Optimizer lifecycle

Authorized zIIP uses for Db2 processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing

https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing
https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing

44

45

46

